RADIOLOGY
LEARNING
what are X-rays?
X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your body. The images show the parts of your body in different shades of black and white. This is because different tissues absorb different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and other soft tissues absorb less, and look gray. Air absorbs the least, so lungs look black.
The most familiar use of x-rays is checking for broken bones, but x-rays are also used in other ways. For example, chest x-rays can spot pneumonia. Mammograms use x-rays to look for breast cancer.
When you have an x-ray, you may wear a lead apron to protect certain parts of your body. The amount of radiation you get from an x-ray is small. For example, a chest x-ray gives out a radiation dose similar to the amount of radiation you're naturally exposed to from the environment over 10 days.
X-Ray Imaging
Print This Page
X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of different tissues. Calcium in bones absorbs X-rays the most, so bones look white on a film recording of the X-ray image, called a radiograph. Fat and other soft tissues absorb less, and look gray. Air absorbs least, so lungs look black on a radiograph. The most familiar use of X-rays is checking for broken bones, but X-rays are also used in cancer diagnosis. For example, chest radiographs and mammograms are often used for early cancer detection or to see if cancer has spread to the lungs or other areas in the chest. Mammograms use X-rays to look for tumors or suspicious areas in the breasts.
The history of x rays.
The discovery of X -Rays
In late 1895, a German physicist, W. C. Roentgen was working with a cathode ray tube in his laboratory. He was working with tubes similar to our fluorescent light bulbs. He evacuated the tube of all air, filled it with a special gas, and passed a high electric voltage through it. When he did this, the tube would produce a fluorescent glow. Roentgen shielded the tube with heavy black paper, and found that a green colored fluorescent light could be seen coming from a screen setting a few feet away from the tube. He realized that he had produced a previously unknown "invisible light," or ray, that was being emitted from the tube; a ray that was capable of passing through the heavy paper covering the tube. Through additional experiments, he also found that the new ray would pass through most substances casting shadows of solid objects on pieces of film. He named the new ray X-ray, because in mathematics "X" is used to indicated the unknown quantity.
In his discovery Roentgen found that the X-ray would pass through the tissue of humans leaving the bones and metals visible. One of RoentgenÂ’s first experiments late in 1895 was a film of his wife Bertha's hand with a ring on her finger (shown below on right). The news of RoentgenÂ’s discovery spread quickly throughout the world. Scientists everywhere could duplicate his experiment because the cathode tube was very well known during this period. In early 1896, X-rays were being utilized clinically in the United States for such things as bone fractures and gun shot wounds.